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INTRODUCTION

Strenuous weight bearing activities cause bending and torsion of bones, particularly in the
lower limbs. Continued repetition of these activities can lead to stress fracture. Stress fracture is a
costly problem for military recruits as well as for elite runners and dancers hence better under-
standing of the phenomenon and improved prevention methods are desirable from both clinical and
economic vantages. Studies of stress fracture susceptibility may also provide insight into more

generalized factors influencing bone strength.

Mechanistically, stress fracture results from a form of fatigue damage. Fatigue damage is a
local microstructural disruption of the material that can progress to complete failure with repeated
loading cycles. Bone and other structural materials have an endurance limit, a level of stress below
which no damage will occur, regardless of the number of loading cycles applied(1). Conceptually
one might eliminate stress fracture by reducing the number and magnitudes of loading cycles, so
that either stresses remain below the endurance level or rarely exceed it. If all individuals were
identical, then this should be achievable by calibrating the training coﬁditions. In military training
facilities, training conditions can be considered to be reasonably uniform, nevertheless stress frac-
tures occur in 5-7% of trainees in elite programs suggesting that some individuals are more sus-
ceptible than others. There is evidence that individual differences may be structural in nature, re-

sulting in proportionally higher mechanical stresses under loading in fracture cases.

Studies of Israeli Army Recruits using radiographic methods showed higher stress fracture
rates in those with narrower tibias(2), and smaller tibia medio-lateral cross-sectional moments of
inertia®). In a previous study of male US Marine Corps recruits using a dual energy x-ray absorp-
tiometry (DXA) method, we similarly found that stress fracture cases had lower medio-lateral
cross-sectional moments of inertia and section moduli in both the distal third of the tibia and the
mid-shaft of the femur(4). Fracture cases in our male study were also physically smaller (i.e.,
smaller body weight and anthropometric dimensions) on average, suggesting that greater stresses
might also be due to proportionately higher loading forces where smaller recruits carry the same

pack loads as larger recruits. However, when bone shaft geometries were corrected for body size



(weight) diaphyseal dimensions remained significantly smaller in fracture cases, while joint dimen-
sions were not different(®). Because diaphyses are more environmentally labile than articulations(®),
this suggested that stress fractures could result from poorer physical conditioning, and thus weaker

diaphyses, prior to recruit training.

Individual differences in stress fracture susceptibility may also have intrinsic or genetic
components. Several stress fracture studies have shown that fractures are more common in females
and are relatively rare in African Americans (6 7). One might infer that African Americans have
stronger bones than whites, and that male bones are stronger than female bones. A similar infer-
ence is usually drawn from osteoporosis studies in the elderly where bone mass is lower and frac-
ture rates higher among whites and females compared to males and African Americans, respec-
tively. The ethnic breakdown of stress fracture cases for Hispanics, African Americans and whites
of both sexes among US Marine Corps recruits’ are shown in Figure 1. Note that like hip fracture
rates in the elderly, stress fractures are more common in females compared to males, and are more
common in whites than in African Americans. Among Hispanics, the male stress fracture rate is
similar to that of whites but in females is significantly higher.

The present study consists of a prospective analysis of female Marine Corps Recruits to
which we compare the previously described male data set (9) supplemented with additional fracture
cases. DXA based methods are again used to derive measures of bone geometry. The geometry
measurements are extended to include estimates of cortical thickness and additional indices of bone

strength. -

We also included measures of DXA derived muscle mass and physical conditioning. While
not readily obvious, in addition to weaker bones, increased mechanical stress may also result from
weaker muscles. Not only are forces on bones mainly mediated through muscle contraction4), but
certain muscle groups function to oppose bending and torsional stresses under load. Weaker mus-
cles may possibly fatigue more easily thus degrading this protective function under repetitive load-

ing. There is also evidence from previous reports that fracture cases are relatively less physically fit

 Richard N. Shaffer LCDR, USN, Personal communication, unpublished data based on 4203 males and 2651 fe-
males in the three main ethnic groups from USMC recruit depots at Parris Island SC (females) and San Diego CA
(males).



(8). We measured relative thigh muscle mass and used it with thigh girth to compute an estimate of
muscle cross-sectional area as an index of muscle strength. In addition, estimates of body fat con-
tent were derived from anthropometry measurements, and physical fitness data on recruits were

extracted from military records.

In this paper we concentrate on characterizing the biomechanical differences between stress
fracture cases and controls. We also examine how these indices differ between the sexes and
among whites, African Americans and Hispanics to determine if they are consistent with rates of

stress fractures in these groups.

BODY
MATERIALS AND METHODS
Subjects:

The study design was prospective; Marine Corps recruits were enrolled after appropriate
IRB approval for human subject research. Female recruits were studied at the Parris Island Recruit
training facility in Beaufort SC, between June, 1995 and September, 1996. Recruit volunteers
were given a consent form during the first week of training and then administered a questionnaire
on general background information (diet, exercise, menstrual and smoking histories, and previous
skeletal injury) for the purposes of a larger separate study. A subset of these recruits was given a
second informed consent to participate in a study involving DXA scans and anthropometry. A ran-
domly selected sample of volunteers was then enrolled for further measurements. At the end of
data accrual in September 1996 a total of 693 female recruits were enrolled for anthropometric
measurements. Of these recruits, 671 received DXA scans. Enrollees ranged in age from 17 to 32

years with an average age of 19 years.

The previously described male study group of 624 enrolled subjects () ranged in age from
17 to 28 years, with an average age of 19 years. To improve case statistics, additional male fracture
cases were added from a subsequent sub-study conducted in June 1994 over the same time period
and location as our previous work. In the sub-study, a streamlined version of the project enroll-

ment was followed where some anthropometry measures were not included, and DXA scans were
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done only on the thigh. Because some pre-screening criteria were used in sub-study enrollment,

“normal” subjects were not necessarily representative and were not used here.

The female cohort was followed through the 12 weeks of training to ascertain the incidence
of stress fractures and other musculoskeletal injuries, discovered by self-referral to sick call. Since
self-referral resulted in a 40% under-reporting of stress fractures in our male study(®), a follow-up
procedure was conducted at the end of training to determine whether the actual stress fracture rate

differed from that self-reported to sick call.
Anthropometric Measurements:

Anthropometric measurements included height, weight, and girths of the neck, waist, hip
(females only), thigh and calf. Lengths were measured of the upper and lower right leg, and me-
dio-lateral widths were measured on the pelvis between the iliac crests, the hips between the greater
trochanters (females), and the right knee at the level of the femoral condyles. An estimate of body
density in males was obtained from height and girth measurements of the neck and waist(®), and
for females, from height and girths of the neck, waist and hip(10), These estimates were then used

with the Siri equation(1D) to estimate total body fat.
Physical Fitness Data

Military records obtained on enrolled recruits included physical fitness scores based on
numbers of repetitions of certain exercises and times recorded to run a specific distance, recorded
during the first week of training. Midway during the female study, the run distance requirement for
the initial strength test was increased from 0.75 to 1.5 miles. This made female scores difficult to
interpret, hence for the purposes of this study, run scores were taken instead from the 1.5 mile run

recorded after two weeks of training.
Bone Measurements:

DXA scans were done with a conventional Norland XR26 scanner (Norland Medical Sys-
tems Inc., Fort Atkinson WI) at both the mid-shaft of the right femur and at one-third the length of

the lower right leg from its distal end®). A scan speed of 10 mm/s with a data spacing of 0.5 mm




was used in the scanner “research” mode for a total of 10-12 scan lines traversing the bone(s) at
each location. Using programs described previously () DXA image data were used to derive me-
dio-lateral bone widths, cross-sectional areas (i.e., cortical-bone-equivalent surface area) and
cross-sectional moments of inertia, of the femur, tibia and fibula at the scan locations described
above. In addition, the “whole bone strength index”, after Selker and Carter (12), was calculated as
the ratio of section modulus to bone length. This index is based on the observation that strength of
a bone under bending or torsion is inversely dependent on bone length and directly related to the
section modulus. In order to make units more convenient bone strength indices were multiplied by
100. As before®), section modulus was calculated as the ratio of cross-sectional moment of inertia
to half of the medio-lateral bone width. Since critical failure may also be related to cortical dimen-
sions, estimates of mean cortical thickness were obtained as well. Because DXA scan resolution is

inadequate for direct measurement of inner cortical dimensions, an indirect estimate of mean corti-

cal thickness (t ) for an equivalent circular annulus was computed as:

t_w Zv_z A
=37 W2) x (i

where w is the measured medio-lateral bone width and A is the cortical equivalent cross-sectional
area. The right part of expression [1] is an estimate of the endosteal radius. Conventional BMD

was also derived individually for the femur, tibia and fibula from the same bone mass data.
Muscle Measurements

The standard Norland software was employed to measure lean and fat muscle mass for the
soft tissues within the thigh scan field. The measurement was expressed as relative lean mass, i.e.
the ratio of lean to total soft tissue mass within the region-of-interest. While the muscle measure-
ment could have been done at both the thigh and lower leg, the distal location of the latter region,

which excluded major muscle (belly) groups, made it difficult to interpret.

Muscle strength can be quantified by physiologic cross-sectional area(13); a quantity based
on knowledge that strength of a muscle bundle is a function of the number and lengths of muscle

fibers within the muscle organ. Because muscle fiber length could not be readily obtained in these
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subjects we derived a muscle cross-sectional area in the thigh (A,,)) as a surrogate. A, was obtained
as the product of thigh soft-tissue cross-sectional area and the relative lean mass fraction. Thigh
soft tissue cross-sectional area was derived from measured thigh girth after subtracting the total
cross-sectional area of femoral bone obtained from its diameter. Both the thigh and femur were as-

sumed to be circular for this purpose.
Ethnic Differences

Among the male and female study populations, 94% and 93% respectively were white, Af-
rican American or Hispanic. Among females 447 (64.5%) were white, 119 (17.2%) were African
American and 76 were Hispanic. Males in those groups consisted of 425 whites, 43 African
Americans” and 133 Hispanics. Differences between these three groups, pooled after excluding

other ethnic groups, were compared within sex.
Statistical Analysis

Statistical analysis of results was done with StatView for the Macintosh (Version 5.0 - SAS
Institute Inc., Carey, NC). Adjusted means of pooled data within sex were computed in StatView
using residuals from the multiple regression on height and weight, summed to the average value of
the parameter. Differences between fracture cases and controls were examined by a two-tailed stu-
dent’s t test, while differences between ethnic groups were tested by Tukey/Kramer post-hoc

analysis.

RESULTS

Fracture Incidence

As in the previous study, fracture case definitions conformed to strict ICD-9-CM Expanded
Orthopaedic criteria®. A total of 37 females suffered stress fractures during the training period,
corresponding to a fracture rate of 5.3%. Unlike the male study group, no additional fractures were

discovered in active follow-up, indicating that self-reporting of stress fracture was accurate in fe-

* Male recruits are trained at both San Diego CA and Parris Island SC, while female recruits are only trained at the
latter facility. The largest ethnic minority at the west coast facility, where we carried out our study of males is His-
panic while African Americans make up the largest minority group at Parris Island.




males. Of the 37 female recruits with fractures, 11 fractured at two sites, and one recruit suffered
four stress fractures. For classification purposes, fractures were categorized as: pelvic girdle (in-
cluding sacrum), femur, lower leg (tibia or fibula), and foot (tarsals or metatarsals). A total of 13
females had at least one stress fracture of the foot, and 10 each had at least one stress fracture of
the pelvic girdle, lower leg or femur. Of the fractures in the pelvic girdle, one was in the sacrum
while the remainders were located in the inferior or superior pubic ramii. Because fracture inci-
dence was low, cases were pooled and all measured parameters were compared with those of non-
fracture cases. In addition to stress fractures, a total of 37 recruits were diagnosed with shin splints
or other skeletal stress reactions, six of whom were later diagnosed with stress fracture. Consistent
with the male study, subjects with shin splints were excluded from the control group(¥). This left a
total of 626 female recruits diagnosed with neither stress fracture nor shin splints for comparison

with 37 fracture cases.

The new male sub-study yielded a total of 15 additional stress fracture cases, four of which
were located in the tibia, and 11 in the foot. Together with the 23 previously reported cases™), a
pooled total of 38 male recruits with stress fractures were available for comparison with the origi-
nal 587 male controls after exclusion of 16 cases of shin splints. The 38 male stress fractures in-
cluded 41% in the foot, 40% in the lower leg and 19% in the femur. Interestingly, above-the-knee
fractures constituted nearly half (46%) of observed cases in females but only 19% in males, none

of which was in the pelvis.

Twenty-seven male and twenty-eight female fracture cases were white (71% and 76% of
totals, respectively). No male African American fractures were recorded in this sample, while 3
(8%) of the female cases were African American. Ten of the male cases (26%) were Hispanic, as
were 5 female cases (14%). Because of the small number of fractures in some sex/ethnicity sub-
groups, differences between fracture and controls were not analyzed within ethnic groups. How-
ever, differences between ethic groups in physical characteristics are examined in a later section
and related to fracture rates within these groups. The following section compares the physical char-

acteristics of fracture and control subjects, by sex, with pooled ethnicity groups.



Fracture Cases versus Controls, Pooled Ethnicity

Anthropometric variables and physical fitness:

Means and standard deviations for age and anthropometric and fitness variables in cases
and controls of both sexes are given in Table 1. As we found previously for male stress fracture
cases®, females with stress fracture were on average smaller in height, weight, and most dimen-
sional measurements; but unlike their male counterparts, differences were slight and did not reach

statistical significance (Table 1).

With the addition of 15 additional cases to the male data, the same anthropometric variables
that were significantly smaller in fracture cases in our earlier study remained significant, but mag-
nitudes of differences in height, weight, BMI (weight in kg/(height in m)?) and most girth dimen-
sions were somewhat smaller than those reported previously(4). Pelvic widths as an index of
skeletal size were smaller in male cases than in controls but not significantly different in females,
while bicondylar breadth, a measure of joint size was essentially identical in cases and controls of

both sexes.

Percent body fat content (Table 1) as estimated from anthropometric dimensions was lower
in fracture cases of both sexes but did not reach statistical significance in either sex. As shown in
Table 1, stress fracture cases were on average, able to do fewer sit-ups and run times were signifi-
cantly longer. Taken together with the observations on thigh muscle measurements (see below),
stress fracture cases appear to have weaker thigh muscles than non fractured controls, and consis-

tent with previous reports(®), are significantly less physically fit.

Bone Geometry and Mass Variables

The average values of femoral and lower leg bone geometry are compared between cases
and controls of both sexes in Table 2. Dimensions are reported in powers of cm to facilitate com-
parison with literature values. Also male cross-sectional measurements were linearly scaled to cor-
rect a calibration error in the original work(®). Since the correction applied equally to all subjects it

had no bearing on previous conclusions, but absolute values of bone cross-sectional areas and




moments of inertia were reduced by 39%. Since the additional male cases were not scanned in the
lower leg, the tibia and fibula values are as reported previously (after scaling correction and con-
version to cm)®) but strength indices and cortical dimensions have been added. Femur averages
reflect the larger set of 38 male fracture cases.

Conventional BMD is significantly smaller in fracture cases for all three bones in both
sexes as are many of the geometric variables. For most variables, differences between cases and
controls are greater in males than females. This observation is misleading since bone geometry is
clearly body size dependent and male fracture cases showed a greater size discrepancy from con-
trols than did females. In males we previously found that body weight was the best single de-
scriptor of body size, with the highest correlations with skeletal geometry compared with other
anthropometric measurements. The same finding was observed here in females. Coefficients of
determination from regressions of geometric dimensions and BMD on body weight explained from
4% to 52% of the measured variance in those variables; all correlations were significant at the p<
0.05 level. Correlations with height were also significant, though weaker in most of the measured
parameters. We therefore decided to adjust bone and muscle measurements using the residuals
from the multiple regression on height and weight, summed to the average value of the parameter
within sex.

Because the fibula carries little body weight, body size-related variations are difficult to in-
terpret. Composite sectional properties of the tibia and fibula while possible were not attempted due
to uncertainty in the relative positions of the bones in a single projection image. Observed correla-
tions of height and weight with fibula measurements were also weaker than with the femur and
tibia. To simplify interpretations, fibular dimensions were excluded from further analyses.

After adjustment for body size, one male fracture case with both body mass index (BMI)
and percent body fat in the 99th percentile (31.4 kg/m2 and 30% respectively) appeared to skew the
size adjusted tibia averages. This subject, who suffered one of the few male femoral stress frac-
tures, had an adjusted tibia strength index that was 2.4 standard deviations above that of male con-
trols. Consistent with his fracture location, however, his adjusted femoral strength index was

lower, within a standard deviation of control values, although higher than the average of fracture



cases. Because his adjusted tibia values appeared to be inconsistent with other fracture cases, his
tibia (only) measurements were excluded from adjusted means. Height and weight adjusted means
are compared between cases and controls in Table 3.

Interestingly, size adjusted male but not female fracture cases have wider pelves and longer
femora than controls, while tibia lengths are similar. Size adjusted differences in joint size as indi-
cated by bicondylar breadth remain non-significant for both sexes (Table 3).

Many of the bone measurements that differed in the unadjusted data (Table 2) remain sig-
nificantly different between cases and controls after adjustment for body size. BMD differences in
males are eliminated by size correction but this is not the case in females. This apparent anomaly
becomes clearer with a closer look at adjusted cortical dimensions (Table 3). Only female cases
show thinner cortices; male cases show somewhat narrower periosteal diameters, but little differ-
ence in cortical thickness. Thus, the percentage of cortical bone within the periosteal envelope is
smaller in female cases, but not in males, leading to a significant reduction in BMD in female frac-
ture cases. Bone strength, as depicted by section modulus or bone strength index, is smaller in
fracture cases of both sexes. The reduced strength in females is due to smaller cortical thickness,
while in males it is due to narrower periosteal diameter. Note that a longer femur length is a con-
tributor to lower bone strength indices in male fracture cases, while in the tibia and in both bones

of females, lower strength indices are due only to lower section moduli.
Muscle Measurements

In females, but not males, the uncorrected lean muscle mass at the thigh is significantly
smaller (Table 2) in fracture cases. However, when thigh muscle cross-sectional areas were com-
puted, differences between cases and controls in both sexes are significant. After correction for
body size (Table 3), essentially the same differences are observed. Differences between cases and
controls for thigh muscle cross-sectional area decrease in magnitude after body size adjustment but
remained significant. This indicates that muscles are relatively smaller in cases after correction for

body size, consistent with the findings of smaller bone geometries and poorer fitness levels.
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Ethnic Differences, Pooled Cases and Controls

Anthropometric variables and physical fitness:

Average values of age, anthropometric dimensions, and physical fitness for the pooled
sample (fracture and shin splint cases + controls) of the three main ethnic groups broken down by
sex are shown in Table 4. Subject ages were essentially identical across ethnic groups, but there
were a number of anthropometric and dimensional differences in both sexes. African Americans
were similar in height, weight and BMI, but had lower body fat, smaller waists, narrower pelves
and relatively longer thighs and tibiae, compared to whites. Although the differences do not all
reach significance, Hispanics of both sexes tended to be lighter and shorter in stature than whites
or African Americans, with higher BMI’s and body fat content. Breadths of the pelvis were similar
in whites and Hispanics of both sexes but narrower in African Americans. In females, trochanteric
breadth was narrower in Hispanics and African-Americans compared to whites. Among Hispanics,
thigh lengths were shorter than those of whites or African Americans in both sexes; tibia lengths

were similar to whites in females but shorter in males.

Exercise scores based on numbers of sit-ups were similar in all groups but longer run times
(not significant in males) are suggestive of poorer initial physical condition in African Americans

relative to whites or Hispanics.

Bone and Muscle Variables

Height and weight-adjusted means for pelvic width, bone lengths, geometries and muscle
parameters are listed in Table 5, broken down by sex and ethnicity. Note that in both sexes, ad-
justed pelvic widths are narrower in African Americans compared to whites or Hispanics. In
males, femurs and tibias are longer in African Americans, and similar in whites and Hispanics.
Adjusted thigh lengths in African American and Hispanic females were similar but longer than
those of white females. Also among females, tibias are longest in African Americans, intermediate
in Hispanics and shortest in whites.

With respect to bone cross-sectional geometry and BMD in both sexes, ethnic differences

are greater in the tibia than in the femur. In the female femur, African Americans and whites BMD
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and geometry values are quite similar although in the tibia, BMD, cortical area, periosteal width
and section modulus are higher than those of whites. African American females have similar tibia
widths but thicker cortices compared to Hispanics. In both bones, Hispanic females show lower
values of BMD, cortical thickness and strength index (not significant in femur) compared to
whites. Note that in this case the lower femur strength index in Hispanic females is due to both
longer femurs and (non significantly) smaller section moduli. In the male, differences between
African Americans and whites are unremarkable in the femur but in the tibia, cortical area, CSMI
and section modulus are greater in African Americans. In the male Hispanic, the geometric differ-
ences from whites are less apparent in the tibia than in the femur, where strength index and cortical
areas are smaller in Hispanics. Note that in both sexes and both bones (not significant in the fe-
mur) African American show higher section moduli than the other two groups but the differences
are largely offset in the strength indices by longer bones. Thighs of African Americans of both
sexes are leaner, with significantly larger muscles than those of whites or Hispanics.

These differences do not all reach statistical significance, but are generally suggestive of
higher bone and muscle strength in African Americans and lower bone and muscle strength in His-
panics, relatively to whites. Interestingly the ethnic differences are greater in the tibia in some

comparisons and in the femur in others.
DISCUSSION

Stress fracture may be considered as a case of structural failure of bone, thus should be
amenable to biomechanical explanation. Here we have attempted to supplement bone mass meas-
urements with quantities having intrinsic biomechanical meaning, in an attempt to provide more
direct insight into differences in bone strength. The results of this study support the growing body
of evidence for the hypothesis that stress fracture occurs because fracture cases experience rela-
tively higher skeletal stresses than do those who do not fracture. It is also not surprising that there

appear to be both bone and muscle components of these higher mechanical stresses.

In our previous paper we noted that male fracture cases were relatively smaller in body size

than controls, although the addition of 15 more cases to that male group reduced body size differ-
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~ences. These size differences were also not apparent in female stress fracture cases when compared
with controls. We had previously hypothesized that the greater stress fracture rate in smaller indi-
viduals resulted from relatively higher stresses due to a greater incremental loading when carrying
the same backpack loads. This conjecture may still play a part, but reduced size differences with a
larger male case sample, and the fact that female cases were not significantly smaller, would sug-
gest that the role of body size is a minor one. The observation that tibia and femoral section moduli
and strength indices were smaller in fracture cases is, however, consistent with our earlier work(®)
as well as that of Giladi(%> 3, 19 and colleagues. The fact that these geometric differences remain
after correction for body size (height and weight), and that the knee joints (bicondylar breadth) of
cases are not different, would suggest that cases have long bone geometries that are less well suited
to resist the mechanical stresses of intense physical training. An important question is whether
these bone strength differences are environmentally determined, i.e., lack of adaptation to the an-
ticipated levels of mechanical stress encountered in military training, or genetically predisposed.
Here, there appears to be fuel for the argument that bone strength differences have both environ-

mental and genetic factors.

Marine Corps recruits in these cohorts had an average age of 19 in both sexes; an age at
which long bone joints have generally reached adult dimensions and can no longer adapt to envi-
ronmental changes in skeletal loading. Indeed they are not different between cases and controls in
these data. The shafts of long bones however, retain the ability to adapt to changes in loading
through adult life®>). The mechanical stresses generated in long bones from physical activity are
dominated by dynamic stresses due to bending and torsional loads(15). Attached muscles acting to
move the body against gravitational forces produce these dynamic stresses(16). Generalized models
of physical adaptation of long bones as proposed by Beaupre et al (17) and later refined by van der
Meulen et al (18) assume that bones adapt to produce stress magnitudes corresponding to a specific
normal range of strains, consistent with the “mechanostat” of Frost(19), These generalized models
are based on the view that the maximum strain that can be generated in a given bone is proportional
to the strength of the muscles acting on that bone. These necessarily simplified models assume that

muscle strength scales with body weight. Our data generally support this simplification since sec-
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tion moduli and bone strength indices at scan locations are well correlated with body weight in both
sexes, (r” = 0.3 to0 0.5). Clearly, however, similarly sized individuals vary in muscle strength, and
if muscle forces are indeed the osteogenic stimulus for adaptation, those with weaker muscles
should also have weaker bones. Here we see that after correcting for body weight, stress fracture
cases of both sexes not only have smaller bone geometries but also smaller thigh muscle cross-
sectional areas and are in poorer physical condition. Smaller muscle cross-sectional areas would

generate lower peak forces consistent with the smaller bone geometries in fracture cases.

The sex differences in cortical geometry, where female cases have relatively thinner cortices
and male cases have relatively narrower periosteal diameters, are interesting from a developmental
perspective. There is evidence that the periosteal surface of long bones is most sensitive to altera-
tions in mechanical loading during childhood and early adolescence, but the endosteal surface is
more sensitive thereafter(20). This difference may be related to more general developmental changes
in bone modeling/remodeling that occur during adolescence. These changes occur earlier in females
than in males (21), While males and females in our study were the same absolute age (Table 1), the
female skeleton may be relatively more developmentally advanced. Thus if physical inactivity ex-
plains at last part of the smaller bone dimensions in our fracture subjects, then it is possible that
this had more of an effect on the endosteal surface of the more developmentally mature females,
and on the periosteal surface of the less mature males. This conjecture is consistent with our geo-
metric results. These results also caution against the use of BMD in mechanical interpretations,
since a change in BMD may or may not be associated with a corresponding change in structural

strength (also see Ruff and Hayes 1984)(22),

The fact that smaller muscles and poorer physical condition are associated with stress frac-
ture is interesting from two standpoints. First, the smaller muscle forces could play a role in devel-
opment of inadequate bone geometries, but secondly, weaker muscles may themselves lead to
higher bone stresses under repetitive loading. In recent work by Milgrom and colleagues rosette
strain gauges were implanted on tibiae of 5 male and 3 female military recruits and strain rates in
free walking on a treadmill were recorded before and after a muscle fatiguing 2 km run(23), In both

sexes there was a significant increase in strain magnitudes and strain rates following the 2-km run,
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moreover the increase was greater in females than in males. This would suggest that muscles serve
a protective role in resisting the normal stresses in bones. Contraction of a muscle attached to the
terminal ends of a long bone may serve to resist bending in opposition, thus converting bending
stresses to compressive stresses; bone is intrinsically stronger in compression than in tension or
shear (24). Muscle fatigue appears to diminish this protective function resulting in higher bone

stresses.

If prior physical condition results in the bone and muscle changes that underlie stress frac-
ture susceptibility, then one would expect that physical fitness levels among ethnic groups would
correspond to their observed rates of stress fracture. Male Hispanics and whites have similar fit-
ness levels and indeed their stress fracture rates are similar (Figure 1). Female Hispanics have a
higher stress fracture rate than whites but their fitness levels also are similar. The observation that
the physical fitness of African Americans was similar (males) or slightly worse (females) than
those of whites, taken with their lower rates of stress fracture would suggest that genetics rather
than physical conditioning may explain their apparently stronger bones. Despite ambiguous physi-
cal fitness data, there are differences in body size-adjusted lower extremity bone structure and
musculature between the ethnic groups. While not strikingly clear, these differences are consistent

with the ethnic patterns in stress fracture rates observed in this population (Figure 1).

Stress fracture appears to be associated with a wider pelvis in males (Table 3); African
Americans have narrower pelves than whites or Hispanics (Table 5). Fracture susceptibility is also
associated with smaller section moduli, and indeed this value is largest in African Americans of
both sexes, although femur values do not reach significance. Longer bone length reduces bone
strength; indeed male fracture cases (Table 3) had significantly longer femora. African Americans
however, show longer tibias and femurs (Table 5), which when combined with the section
modulus in the strength index, reduce values to similar or slightly larger (not significant) to that of
whites. The only statistically significant ethnic differences in strength index, were seen in the
smaller values relative to whites in the femurs of Hispanics of both sexes. This observation is con-
sistent with the higher Hispanic stress fracture rate in females but is not consistent with the rate in

males.
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Perhaps the most interesting ethnic differences are in the thigh muscle measurements. In
both males and females the thigh lean fraction is higher and the muscle cross-sectional area is larger
in African Americans compared to other groups. Thighs of Hispanic males were significantly less

lean and had smaller muscle cross-sectional areas compared to whites or African Americans.

It seems likely that the explanation for the observed differences in stress fracture rates in the
different ethnic groups may be due to a complex interplay of physical conditioning and genetically

associated factors influencing both bone and muscle geometry.

There are a number of limitations of this work. First, like some other stress fracture stud-
ies 3) the femoral and lower leg bone geometries were measured in a single plane and thus are
relevant mainly to frontal plane stresses. Much of the dynamic loading of the lower limb produces
stresses in the saggital plane(25). Another limitation of this work is that like a large fraction of bone
mineral studies in the literature, skeletal measurements at one (technically convenient) anatomical
location were used to infer bone strength at other locations. Moreover, our sample size of stress
fracture cases was not large enough to permit separate analysis by fracture location. This assumes
that bone measurements at the femur or tibia are representative of bone strength at othef lower ex-
tremity locations. Certainly there is heterogeneity in the geometry between lower extremity loca-
tions in the same individual, and this methodology lacks the resolution to differentiate these differ-
ences. Conceivably a larger study, with more stress fracture cases could provide greater insight

into bone strength differences between fracture sites.

Use of the DXA methods in this study illustrate that structural information is indeed present
in bone mass data, though its implications are not always evident in the conventional presentation
(as BMD). In fairness, current DXA scanners are better suited to measurement of BMD where di-
mensional errors are less problematic, than they are to the measurement of geometry. The dimen-
sional differences between cases and controls in this study are quite small; for example, the rela-
tively large 15% average difference in uncorrected male femoral sectional modulus (Table 2) was
attributable to only 1 mm in periosteal breadth. Many other dimensional differences such as cortical

thicknesses were much smaller. The coefficient of variation in bone widths with our measurement
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averaged about 0.2 mm(), it is therefore likely that the ability of current DXA technology to de-
tect small differences in bone geometry in individuals would be limited. Also, while DXA scan-
ners can be used to determine lean muscle mass, our measurement was rather crude and could be

improved with better technology, and ad hoc software and calibrations.
CONCLUSIONS
The conclusions of this study are as follows:
e Stress fracture susceptibility appears to have both environmental and genetic components.
e Consistent with other reports(®), stress fracture cases are less physically fit than non-cases.

e Those who do not fracture in both sexes show significantly larger bone cross-sectional geo-

metries consistent with stronger bones.

e Fracture cases of both sexes have smaller thigh muscles consistent with a role for muscle in

stress fracture susceptibility.

e Higher fitness levels and larger muscle sizes in controls suggest that bone geometric differ-
ences are an adaptation response from the increased mechanical loading due to physical condi-

tioning prior to the initiation of basic training.

e Female stress fracture cases show thinner cortices than controls but similar periosteal diame-
ters, while male cases show narrow periosteal diameters but similar cortical thicknesses com-
pared to controls. This may indicate a sex difference in the bone response to physical training
where females respond by building bone on the endosteal surface while males respond on the

periosteal surface.

e Ethnic differences in bone geometry and muscle size are suggestive of a genetic role in fracture
susceptibility, particularly in explaining the lower fracture rates in African-Americans. African-
Americans show significantly leaner thighs and larger thigh muscles compared to Whites de-
spite a suggestion of poorer initial physical conditioning. African-Americans also show larger
section moduli in the tibia indicating lower bending stresses, but this advantage may be offset

by longer leg bones producing larger bending moments. The narrower pelves of African
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Americans may also provide an unexplained mechanical advantage, as male fracture cases had

significantly wider pelves compared to controls.

Conventional bone mass measures (BMD) can obscure the underlying geometric changes re-

sponsible for differences in fracture susceptibility.

The measurements of bone structural geometry and muscle, employed non standard analyses
which be difficult to implement as a practical screening tool without improvements in scan pre-
cision and image spatial resolution. Precision is also limited by restriction of the data to a single
plane since dimensional errors can result from variations in patient position since bones are not
axially symmetric. Under a NASA sponsored contract we are developing a high resolution
multiple projection DXA scanner specifically designed to measure the three dimensional struc-
tural geometry of long bones. The design would be well suited to the screening of subjects for

stress fracture and to the quantification of musculoskeletal response to physical training.
A number of scientific and practical questions remain.

e Isit possible to detect a strengthening response in bone resulting from training? Poor preci-
sion and spatial resolution of the commercial DXA system prevented the successful detec-
tion of geometric changes in bones as a direct response to the training regimen. We con-
tinue to pursue this question using the same technology with sequential scan data from a
larger study of US Naval Academy undergraduates. We hope that the larger study may
permit such subtle changes to be extracted in the presence of poor precision, although ulti-

mately better technology is needed.

e We do not fully understand the interrelationships between muscle strength and bone
strength. This has important implications in the etiology of stress fracture but also in un-
derstanding the interplay between physical activity and osteoporosis and fracture risk in the

elderly.

e How much and what kind of training would strengthen bone sufficient to prevent stress

fracture?
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e If a quick screening method is to be developed, what skeletal locations should be measured

to best represent the risk of stress fracture and to best characterize lower limb strength?

¢ How do DXA derived measurements of muscle size correlate with objective measures of
muscle strength?  Can a practical, rapid muscle strength measurement be developed from

DXA technology?
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